公約,公倍○量を計るとは何の謂ぞ○ユークリツドの法式,二つの場合○公約なき量の實例○ユークリツドの比の定義,比と有理數との相等及大小,二つの比の相等及大小○量と直線上の點との對照,稠密なる分布は連續に非ず,連續の定義○結論,數の原則
|
············································································································································································································································································································
|
三二三-三七九
|
限りなく多くの數,上限及下限○基本定理○稠密なる分布,等分の可能,アルキメデスの法則は,凡て連續の法則に含蓄せらる○有理數の兩斷と無理數○無理數の展開,無限小數の意義○量を計ること及其數値の展開○展開せられたる數の大小の比較,展開の唯一なること○無理數の加法及其性質○加法の近似的演算○比例に關する定理,比例式解法,乘法及除法の意義○乘法及除法の性質○負數
|
············································································································································································································································································································
|
三八〇-四一四
|
集積點,極限,其定義及例○集積點に關する基本の定理○無限列數,極限存在の條件○極限と四則,無理數及其算法の第二の定義○連續的算法の定義,連續的算法の擴張