このページは校正済みです
13
附錄
の存在せざるは の より大なるを得ざるなり.
(三四〇頁) を採ること此證明に絕對的必須なるには非ず. を任意に二つの正數の和となし と置き,唯 をして より小ならしむ.さて なる如き有理數 は甲に屬し,又 なる如き有理數 は乙に屬し,而して なり. , に代ふるに を以てするは言語短縮の爲なるに過ぎず.此種の論法に慣れざる讀者の爲に,特に之を言ふ.
九(六) 三四八頁. が或數を表せりといふに當り,「…」を以て略せる諸係數は定まれる數なるべきを要すること勿論なり.
九(十)(十一) 比例式よりして數の四則算法を定むる徑行につきては例へばウエーバー氏代數學一の卷序論(H. Weber, Lehrbuch der Algebra 1. 再版 1898)を參照せよ.
十(一) 三八二頁., より成れる の集積點の例はヂニ(上出)より採れり. は集積點にあらざることを證せよ.又 及び の外に集積點なきを證せよ. の諸數を圓に表はせ,集積點の意義明白に理會せらるべし.
十(二) 間隙を順次十分する代に二分するも亦可なり.しかするときは は を基數とせる展開によりて與へらる.此論法によりて或數の存在を證明すること,蓋しワイヤストラスに始まる.
十(四) カントル,メレーの無理數論,上文を參照せよ.無理數の定義を最卑近なる方法によりて與へんと欲せば,之を無限小數によりて定めらるゝものとなすべし.無限小數は實にカントルの基本列數の特例なり.かくして無理數の意義を定むるときは其大小の意義は九(七)に於けるが如くにして定