へりや否や.之を審査するに當り先づ次の事實より始めんとす.
七, μ = a ∗ b {\displaystyle \mu =a*b} , μ ′ = a ′ ∗ b ′ {\displaystyle \mu '=a'*b'} , μ ″ = a ″ ∗ b ″ {\displaystyle \mu ''=a''*b''} となすとき,五に從ひて μ = μ ′ {\displaystyle \mu =\mu '} , μ = μ ″ {\displaystyle \mu =\mu ''} ならば必ず,又 μ ′ = μ ″ {\displaystyle \mu '=\mu ''} なり.
げにも μ = μ ′ {\displaystyle \mu =\mu '} , μ = μ ″ {\displaystyle \mu =\mu ''} より五によりて a ′ ∘ b = a ∘ b ′ {\displaystyle a'\circ b=a\circ b'} , a ∘ b ″ = a ″ ∘ b {\displaystyle a\circ b''=a''\circ b} を得,一,二,三を本來の數 a {\displaystyle a} , a ′ {\displaystyle a'} , a ″ {\displaystyle a''} , b {\displaystyle b} , b ′ {\displaystyle b'} , b ″ {\displaystyle b''} ,に適用して ( a ′ ∘ b ″ ) ∘ ( a ∘ b ) = a ″ ∘ b ′ ∘ ( a ∘ b ) {\displaystyle (a'\circ b'')\circ (a\circ b)=a''\circ b'\circ (a\circ b)} を得更に二によりて a ′ ∘ b ″ = a ″ ∘ b ′ {\displaystyle a'\circ b''=a''\circ b'} 卽ち五に從ひて μ ′ = μ ″ {\displaystyle \mu '=\mu ''}
さて一を驗證せんが爲に μ = a ∗ b {\displaystyle \mu =a*b} , μ ′ = a ′ ∗ b ′ {\displaystyle \mu '=a'*b'} , ν = c ∗ d {\displaystyle \nu =c*d} , ν ′ = c ′ ∗ d ′ {\displaystyle \nu '=c'*d'} と置き μ = μ ′ {\displaystyle \mu =\mu '} , ν = ν ′ {\displaystyle \nu =\nu '} より μ ∘ ν = μ ′ ∘ ν ′ {\displaystyle \mu \circ \nu =\mu '\circ \nu '} を得んとす.先づ
よりて μ ∘ ν = μ ′ ∘ ν ′ {\displaystyle \mu \circ \nu =\mu '\circ \nu '} は五によりて ( a ∘ c ) ∘ ( b ′ ∘ d ′ ) = ( a ′ ∘ c ′ ) ∘ ( b ∘ d ) {\displaystyle (a\circ c)\circ (b'\circ d')=(a'\circ c')\circ (b\circ d)} に歸す.而も此等式は μ = μ ′ {\displaystyle \mu =\mu '} , ν = ν ′ {\displaystyle \nu =\nu '} より得べき a ∘ b ′ = a ′ ∘ b {\displaystyle a\circ b'=a'\circ b} , c ∘ d ′ = c ′ ∘ d {\displaystyle c\circ d'=c'\circ d} によりて保證せられたり.
組み合はせの法則は ( a ∗ b ) ∘ ( a ′ ∗ b ′ ) ∘ ( a ″ ∗ b ″ ) = ( a ∘ a ′ ∘ a ″ ) ∗ ( b ∘ b ′ ∘ b ″ ) {\displaystyle (a*b)\circ (a'*b')\circ (a''*b'')=(a\circ a'\circ a'')*(b\circ b'\circ b'')}